DPM Workshop

June 5 - 6, 2007 Elko, Nevada

Diesel Particulate Filter Application Case Study

Mark L. Good
Sr. Mining Engineer
Kennecott Greens Creek Mining Company

Kennecott Greens Creek Mining Company

- Multi pronged approach for DPM control
 - Corrective Measures for Existing Ventilation
 - Engine Replacement
 - Exhaust Filtration
 - Upgrade Mine Ventilation Volumes
 - Alternative Fuel Trials

Exhaust Filtration

- Assess equipment fleet as to primary sources for DPM
- MSHA listing for Particulate Index (P.I.)
- P.I. is based on Ventilation Rate to normalize emissions to 1000 μg/m³
- Some of your larger engines may not be your biggest polluters

Diesel Particulate

MAJOR EQUIPMENT FLEET

• 40D Truck	6	475 HP
• 450/1250 Loader	4	300 HP
• 420 Teletram	6	225 HP
• 436 Teletram	2	375 HP
Wagner ST3.5D	4	200 HP
 Elphinstone Loader 	1	165 HP
 Getman Carriers 	11	150 HP
 Normet Carrier 	2	150 HP
Jumbos	10	75 HP
• Tractors	25	53 HP

Exhaust Filtration

- Target Equipment Requirements for Passively Regenerated Filters
 - 4 Cycle Engines
 - High Duty Cycle
 - High Exhaust Gas Temperatures

Exhaust Filtration

- Temperature profiling is imperative
- Data logging over several days to gain a good perspective of operating conditions
- Test each piece of equipment in a given production cycle
 - Eg; Two LHD's, similar configuration, one in remote mucking, the other in manual mucking
 - One configuration was successful, the other, marginal

4 Channel Data Logger

6" K type Thermocouple

Data Logger, Probe and Case

Toro 40 D Installation

Toro 40 D Installation

Getman A64 Scissors Truck

Getman A64 Installation

Getman A64 Installation

Getman A64 Installation

Kubota M5030 Tractor

Kubota M5030 Tractor

Kubota M5030 Installation

Temperature Profile

Temperature Profile

Diesel Particulate Filter Selection Criteria

- Catalyzed Cordierite Filter
 - 20 % Duty Cycle exceeds 325 Degrees F
- NIOSH Filter Guide
 - http://www.msha.gov/nioshmnmfilterselectionguide/MNM_DPF_Questions.htm
 - http://www.msha.gov/nioshmnmfilterselectionguide/temp_analysis.htm

Passive Filter Installation

Active Filter Installation Getman A64 Powder Truck

Active Filter Mounted on Getman Powder Truck

LR46 - 6 Weeks -Filtered Exhaust

LR46 - 1 1/2 Shifts with no Filter

Pre & Post Filter Samples

Failing Filter Discharge Side - Soot Ghosting, Rotation

Failed Ceramic - Exhaust Bypass

Active Regeneration Filters Left – Clean Filter, Right - Soot Loaded Filter

Active Regeneration Station Control Panels

Active Regeneration Station Heater Bases

Thermograph Heat Plume of Heating Filter

Thermograph Discharge side of Regenerating Filter

MSHA Cooperative Test DPM Sampling - Jan 2003

- Average Stope Sample Total Carbon
- Stopes tested 675 / 704 / 490 / 446 / 30

- Sampler mounted on LR46, outside cab
 - Filtered Equipment : 205 ug/m³
 - Unfiltered Equipment: 1,233 ug/m³

MSHA Cooperative Test DPM Sampling - Jan 2003

- Average Stope Sample Total Carbon
- Stopes tested 675 / 704 / 490 / 446 / 30

- Sampler mounted on LR46, inside cab
 - Filtered Equipment : 49 ug/m³
 - Unfiltered Equipment : 271 ug/m³

Greens Creek Mining Company

Mark Good – Senior Mining Engineer goodm@kennecott.com (907) 789 – 8122

